Decision support system is the kind of applications of management information systems where the main focus is on assisting a decision maker to manipulate analyze and evaluate the multitude of complex factors before coming to a final decision. Decision support system is some specialized kind of information system that assists the decision makers in the bank in at dealing with unstructured decisions and semi-structured decisions.
Techniques: Bayesian Network, Decision Tree, Neural networks
Keywords: Decision Support System, Bayesian Network, Network, Neural network
Introduction
Coming up with a Decision Support System has been a challenging task because most of such developed systems usually fail either the time of their development or immediately after they have been developed or after being in operation for some time (Zurada, et al.2014). These failures are brought about by some reasons. It is therefore of the very great essence to understand how a decision support stem is designed and its operation model (Iturriaga, et al.2015). Through this, it becomes easier to come up with a model that can help serve a specific purpose under which it is created to.
DSS gives the decision makers better ways of evaluating different alternatives and determining one of the most optimum alternatives (Wolff,et al.2014). Also, it also supports the decision makers in what-if the contrary comes up. Therefore, the main aim of the decision support system is to come up with an integrated framework for the machine, problem and the decision maker Aglietta,et al.2014). It gives the manager to interactively query large reservoir of data and to leave aside that was specific interest to a particular problem (Tuckwell, et al.2013). The DSS has been developing over time. For instance, in the early 1990s, there was a shift from the mainframe-based DSS to server/client based DSS. There were a lot of tools that were also introduced to curb the situation.
Risk factors are common factors in the banking industry. Therefore, credit operations against collateral are a major risk factor that any bank in the banking industry must have in place strategies or technologies that will help solve the situation (Kumar,et al.2015). It is good therefore to have a decision support system for risk assessment of the credit operations against collateral (Abdelmoula,et al.2015). His will help to minimize any kind of loss that can be suffered as a result of credit that has been issued by any organization. In most of the organization system, in credit decision making, there is the probability of default models that finds out the cost of capital and in price agreement (Kelliher,et al.2017). Furthermore, most of the central banks have dramatically evolved to a setting where the use of these models works to attain firmness standards for credit risk valuation in the bank system (Srinivas, et al.2015). In the banking industry, the credit risk assessment normally depends on the credit scoring models. The guarantors during the credit are divided into two main parts (Hautsch,et al.2014). These are the guarantor with the assets and the guarantor with the individual. All of this focus to enhance security in the credit operations as a payment alternative to the credit holder that is given to the lender ad cannot honor to pay the credit on the agreed time (Sousa,et al.2015). On the part of the creditor, it gives the liquidity security from receiving operations. The admeasurement of the recoverability of credit is systematic that looks into the efficiency of the mechanism of return of capital invested in collateral (Hossain,et al.2015). The guarantor of the assets gives a high operating cost, and it is challenging to follow in loco for the evaluation procedures an asset. This explains why there should be a specific attention owing to the large volume of goods and insufficient technical and operation capacity. (Sadatrasou, et al.2015)This paper will look into details various methodologies of the Decision Support System for Risk assessment in credit operations against collateral.
Bayesian Network
Brief introduction
Credit operations are most frequent in the banking industry. It is therefore important to analyze the DSS for assessing the risk factors on credit operations against collateral in the banking industry. Bank credit risk analysis is largely used in all banks globally. Therefore, the credit risk analysis is very critical and also the dreary process (Hossain, et al.2014). There should be a variety of risk methods that should be used for assessing risk. Also, credit risk is one of the main functions of the banking industry Organizations such as banks categories the customers based on their profile. It may range from the financial background of the customers to the subjective factors of the customers (Sadatrasou,et a.2015). Financial ratios play a very great role for the risk level calculation. The financial ratios can show the financial statement of the firm as they are objective. Income statement and cash flow are some of the financial statement that can be used to calculate financial objective financial ratios. Subjective factors can also be used to calculate the risk level factors depending on the mission of the bank and the bank decision strategy (. Credit scoring model can be used to show both subjective and objective factors. The quality of services surrounding the credit operations is very crucial. This is because of the organizations income as well as the market share of the firm, lets say the bank, is directly related to the granted credit. This section has a summary of various studies for the risk analysis with the Bayesian Network decision tool (Lalon,et al .2015). It will also show how it can be used to design a decision support system from the cause-effect relation as well as the conditional probability.
Developing an idea of decision support system in the credit scoring domain through the Bayesian Network can be very sufficient (Mei,et al.2016). Applicability of Bayesian network in the areas of the process of the working capital credit scoring is very essential in the risk assessment. During the design of this decision tool, the Netica software package is used to create the Bayesian network (Triki,et al.2016). The Neural networks can be used to make credit risk evaluations. This is because they put a lot of emphases the significance of universal approximation property and the high prediction accuracy that is associated with this model (Wu,et al.2015).. This decision tool when also used will be able to show the negative ways that are in the evaluation. However, it is challenging o understand how the conclusion have been reached at (Wahyudin,et al.2015). This can best be explained through the credit-risk data and analysis done by the WEKA software and the NeuroRule extraction technique.
Through using the data mining, it can be easy to develop a predictive defaulter mode. Developing credit-risk evaluation expert system using the neural network rule extraction and the decision tables can be very effective (Bayrakdaroglu,et al.2016). This is because the neural networks do very well regarding their performance for the complex and unstructured problem when they are compared to the traditional statistical approaches. This makes them able to attain a high predictive accuracy rate and the reasoning behind how they come about their decisions is not readily available (Firoozye,et al.2016). Some of the techniques that can be used in this decision tool when used in a DSS are the logistic regression, Discriminant Analysis, Classification and regression tree as well as the neural networks.
2.2 Decision theory when evaluating results to determine the risk assessment of the credit operation
Decision theory majorly concentrates on identifying the uncertainties, values as well as other essential issues that are relevant to a given decision relating to the issuing of credit as well as the resulting optimal decision. The decision theory gives the basis for thinking about the challenges of an action (Chorniy,et al.2015). Therefore, while making the decision, there is a great consideration in the probabilistic values for the random variables or each event (Witzany, et al.2017). The random variables or each event are the subjective factors, financial ratios, credit risk classes or the financial, economic classes (Srinivas, et al.2015). They can either be conditional probability or prior probability.
Conditional probability: When extra information is provided when the prior information is already known, the conditional probability can be calculated. The extra information can be collected through observation (Tesfaye,et al.2013). For instance, in the calculation of the financial ratios, there is additional information that the banker gets. This probability can be represented as P (x/ w) (Goodfriend, et al.2014) Decision rule is similar to the prior probability (Hasan,et al.2017). The greatest conditional probability is chosen. If some financial ratios are calculated, the descendant nodes probability tables are changed with regards to the known conditions (Wahyudin,et al.2016). For instance, in assessing the risk factors that are associated with the credit operation in a bank, the bankers are required to determine the credit risk of the client (Baesens,et al.2016). The probability table for the credit risk class is shown in the table below.
Credit Risk Class
One 53, 7%
Two 25/3%
Three 12/5%
Four 7/4%
From the table shown above, the classs one, two, three and four stands for the risk classes with class four being the worst and class one being the best (. Normally, the first and the second classes are always approved. However, this will depend on the strategy of the bank (Ansah,et al.2013). There are some institutions that can improve all the classes with the intent of boosting their market share (Ntwiga,et al.2016). The risk that an institution will subject itself to will depend on the number of the lower class credit approvals that they have approved (Henry,et al.2013). When they have approved a lot of such credit from the lower class, they are likely to have an increase in the credit risks. According to the decision theory, the highest conditional probability is selected. Therefore, the credit class one is chosen.
Prior probability: In this kind of probability, it is assumed that there are some prior probabilities. The probabilities are calculated from the previous data (Margulies,et a.2016). For instance, when one wants to calculate the prior probability of the Average Collection Period that are the financial ratios to indicate the roughly amount of the period that it takes for an organization to receive payment, the formula that is used is: Average Collection Period = (Days * AR)/Credit sales (Pai,et al.2015)
The values are available in the financial statements of the firms. The ratio is calculated for every customer (Weber,et al.2014). The results for all the customers are then classified depending on the strategy of the firm or the bank. In most circumstances, the financial ratios are categorized as good, medium, bad and very bad (Schuermann,et al.2014). Each bank or organization has their range under which they will classify a particular value.
2.3 Analysis of the Bayesian network
The Bayesian Network which is also known as the Belief Network is a graphical decision model (Majeske,et al.2013). It is very effective decision tool that can act as a decision support system for the assessment of the risk factors that are involved against collateral. Due to its strong nature, it can draw inferences when noisy and incomplete data are provided (Yan,et al.2013). The most amazing feature of the Bayesian Network is the ability to show both the qualitative and the quantitative knowledge. Therefore, it can be applied in all the domains (Huang,et al.2014). When it comes to the issuing and paying...
Request Removal
If you are the original author of this essay and no longer wish to have it published on the collegeessaywriter.net website, please click below to request its removal:
- Essay Sample on JFK International Airport's Operational Statistics
- Quality Planning in Projects: Case Studies of Sidney Opera House and Clark Bridge
- Essay Example on Costs of Technology in Learning
- A Research Paper for Suitability for Apple Stocks Investment
- Paper Example on Cross-cultural Management
- A Strong Company Culture - Paper Example
- Management of Food and Beverage Operations - Paper Example